

Preface

Cloud computing has been one of the hottest topics in the IT industry in the last few

years. Given the fact that the importance of artificial intelligence is growing like never

before and cloud computing gives us the ability to use services that directly support AI

solutions, it's evident that sooner or later, as a software engineer, you would have to

deal to some extent with AWS, Azure, GCP or other cloud providers.

Soon, the most successful software engineers will be the ones who act as architects

instead of focusing on one or two core technologies, building complex systems, and

fulfilling different roles with the help of AI.

The idea of this book came to me as I stood on the edge of the three different roles:

software engineer, architect, and DevOps. What is funny is that, many years ago, I

didn't like AWS at all. I was a fan of the traditional approach where we store files on the

same server as the application instance, build features, not outsource them, and avoid

containerization. At some point, I realized I didn't know how to use it properly, and my

ego was trying to find excuses and justifications.

As I changed my mindset, everything else has changed. I started to act like a software

engineer, not a developer who stuck only to the leading technology. After becoming a

CTO of iRonin - Software House, an organization that extensively uses AWS, I decided

to master this solution. Currently, I hold four AWS certifications.

I'm not trying to convince you to become a DevOps or AWS expert. I aim to show you

how you can utilize AWS as a Rails developer to build bulletproof, secure, reliable, and

scalable applications faster. As I worked with hundreds of clients and developers on

various projects, I constantly saw that knowledge of AWS is a valuable asset for every

Rails developer and helps them find a successful path in the demanding market. This

https://www.ironin.it

book covers a minimum amount of theory to understand how things are working and a

maximum number of code samples to use immediately in your projects. The information

and code presented in this book are frequently updated to keep the content as valuable

as possible.

The expertise presented in this book results from hundreds of projects delivered by

iRonin - Software House for companies of different sizes. The code samples are

production-tested and designed so you can use them immediately in your projects. I

hope you will enjoy reading this book as much as I enjoyed writing it for you. Thank you

for your support.

Bug reporting: if you will find a bug in the book, either in the content or the code,

please let me know by writing to contact@paweldabrowski.com or contacting me via

Twitter. Thank you!

3

https://www.ironin.it
https://twitter.com/pdabrowski6

Introduction

You will get the most out of this book by reading it and then using the presented code

and solutions in your code. To do this, you need have:

• Basic Rails application - Ruby 3.2.2 and Rails 7.1.2

• AWS account - you can set up it for free and then use the free tier of services

not to produce any costs

I assume you have experience writing Ruby code, at least on the basic level, where you

can build elementary Rails applications with a few controllers, models, and some views.

Feel free to jump to "Test Rails application creation" if you already have your AWS

account and are familiar with the following terms regarding AWS: users, permissions,

services, regions, and access keys.

AWS account creation

Visit https://portal.aws.amazon.com/billing/signup#/start/email address and provide the

primary e-mail and name for your account:

4

https://portal.aws.amazon.com/billing/signup#/start/email

You will receive an email with the verification code to the address you provided. Once

you provide it, it's time to set up a password for your account. After password setup,

you will be asked about your phone number and address. It's required for legal

purposes and to avoid scam accounts.

Once you finish this part, you must provide credit card details. Don't worry; as I

mentioned before, you will have access to the free tier of services, and it’s even

mentioned on the form you are currently on. The AWS account itself is free.

Tip: whenever it's possible, I use a virtual credit card with a prepaid balance. It works

like a standard credit card; it has a number, CVC code, and expiration date.

Once you add your credit card, you will be asked to confirm your identity by voice or

text. I always select text message, type the code I received, select that I don't want any

paid support for my account, and it's done.

5

Congratulations, you just have set up your own AWS account! Sign in and let's create

the user we will use for the rest of this book.

User creation

Each user that is using a given AWS account should have separate credentials. You can

access all services on the platform as a root account, but we will create a separate

account to show you how to add permissions securely.

According to best practices, the root account should not be used for any development

or service usage; it should be used only for the primary account setup and never

shared with anyone.

Search for IAM service, and then on the left sidebar, select the users link to access the

list of users for your account.

Identity and access management

You should see a blank list that looks similar to this one:

On the top right side of the screen, you will see the account name and "Global".

"Global" indicates that you didn't select any region. Region is a physical location where

6

AWS servers are placed. The IAM service is global and free; it manages permissions for

different users.

Adding new user

Click on the Create user button and provide the user name on the form. I would name

my user "test-rails-app" as it only uses AWS API via the test Rails application. This

newly created user won’t have access to the AWS console via the web interface as you

have now.

On the "Set permissions" step, just click "Next", and on the next screen, click "Create

user". That's it.

Generating API access keys

We want our "test-rails-app" user to access AWS API, so we must generate proper

credentials. Click on the user on the list, and on the detailed view, click on the "Security

credentials" tab.

Scroll down to the "Access key" section and click on the "Create access key" button.

On the next screen, select "Command Line Interface (CLI)" as a use case and select the

confirmation checkbox at the bottom. Click "Next", skip the description input, and click

"Create access key".

You can now copy your Access key and Secret access key or download a CSV file

with credentials; remember that you won’t see the secret access key again if you don't

copy it now. Save the credentials in a safe place; we will need them later. Don't share

them with anyone. You can permanently delete them in an emergency, and they will

stop working.

Summary and next steps

7

Let's quickly summarize what we have done so far:

• We created a brand new AWS account for testing

• We created a user for our Rails application

• We created API credentials for our user used by the Rails application

Go ahead and enable 2FA authentication for your root account. You should always do

this after setting up a new AWS account. When you set a new user with access to the

web interface, enforce 2FA authentication by default to keep the highest security

standards.

The last piece that needs to be included is the test Rails application. I will quickly create

one with the support for ENV variables to use our API credentials to access AWS

services safely.

Test Rails application creation

If you jumped to this section because you already had your AWS account, please create

a test user and assign API credentials. Otherwise, if you followed my instructions, you

should have a test user already created.

Make sure that you have Ruby 3.2.2 installed and selected. I'm going to generate a new

Rails 7.1.2 application with the PostgreSQL database:

rails _7.1.2_ new railsonaws -d=postgresql

Let's create the database for the application and add the dotenv-rails gem to support

environment variables in our application:

cd railsonaws/

./bin/rails db:create

8

bundle add dotenv-rails -g=development,test

Configuration of environment variables

We will store our credentials to AWS in the .env file. First, ensure it won't be included in

the GIT repository - look at the .gitignore file. It should be ignored by default, but it's

better to check.

It's also a good idea to create a .env.example file that will be included in the repository.

Each time someone copies the project, he will know what credentials to include in his

copy of the .env file.

In the .env.example put the following lines:

AWS_ACCESS_KEY_ID=

AWS_SECRET_ACCESS_KEY=

AWS_REGION=eu-central-1

The value of the AWS_REGION setting is not secret so we can put it here. I selected eu-

central-1 because it’s closest to my physical location, so feel free to choose a different

region. Once you pick a region, remember always to select this region when creating or

updating services.

Regarding the .env file, copy the content of the .env.example file but put the real values

for access and secret access keys. Open the rails console and verify that

ENV[‘AWS_ACCESS_KEY_ID’] contains your key.

We are finally ready to start working with the first AWS service inside our Rails

application.

9

Amazon S3

Amazon Simple Storage Service (Amazon S3) is one of the most popular services in the

AWS cloud. It's widely used in Rails applications for file storage also, with Active

Storage, which has support for S3 by default.

In this chapter, you will learn the minimum required to manage S3 service effectively

and implement it in the Rails application. This chapter will include:

• Explanation - I will explain in simple words the idea behind the service

• Use cases - I will share with you some popular use cases for the service within

the Rails application

• Configuration - I will walk you through the configuration process of the service

to make it ready for your Rails application

• Pricing - I will discuss the general pricing for the service as well as different

versions of the service (they are priced a little bit differently)

• Permissions - I will show you how to properly configure permissions for your

user so he can perform only necessary actions

• Development - we will write code together to show you how to utilize the S3

service in your Rails application

AWS provides the free tier for S3 service, which consists of 5 GB of storage for the

standard storage class. It should be enough for our tests as we will upload only smaller

files.

Explanation

Amazon S3 is a service that lets you host your application files and manage them for a

very affordable price. Each time you think about storing photos of your users, some

reports generated by the application, or any other files uploaded by the system or

users themselves - think about the S3.

You can store unlimited files, and a single file can't be bigger than 5 terabytes. The

service itself is a flat structure; it consists only of files and names assigned to it. Files

10

are grouped in buckets. You can have a separate bucket for the staging environment

where you keep the avatars of your users and a separate bucket for the production

environment where you keep the avatars of your users.

The bucket name must be unique across all AWS accounts because it will be visible as

part of the URL through which you can access your files. Given that I name my bucket

as railsonaws, set the region to eu-central-1, and upload there a file named

languages.txt, if I would specify that all files in the bucket are public, I can access my

file with the following URL: https://railsonaws1.s3.eu-central-

1.amazonaws.com/languages.txt

Directories in bucket

You can also create folders inside the bucket but they don't function as ordinary folders

you may know from the operating system. As mentioned, S3 is a flat structure, so the

folder name becomes part of the file key. If I put the file languages.txt into the text

directory, the key of the file would be text/languages.txt, and the URL would look as

follows: https://railsonaws.s3.eu-central-1.amazonaws.com/text/languages.txt

You won't be able to access https://railsonaws.s3.eu-central-1.amazonaws.com/text

and get a tree of files inside the directory as it would be possible in Linux, Windows, or

Mac OS.

Metadata

S3 is a key-value pairs structure where key is the name of a file and value is the file

11

https://railsonaws1.s3.eu-central-1.amazonaws.com/languages.txt
https://railsonaws1.s3.eu-central-1.amazonaws.com/languages.txt
https://railsonaws.s3.eu-central-1.amazonaws.com/text/languages.txt
https://railsonaws.s3.eu-central-1.amazonaws.com/text

content, but you can also attach some additional file information called metadata.

A typical example of metadata is the content type of the file:

You define your entries in the metadata either using the form in the bucket settings or

via API when uploading a file.

Storage classes

Amazon introduced the concept of storage classes as we are not using all files the

same way:

• User avatars - we need to use them frequently; we display them each time

someone visits the given user's page

• Database backups - we use them from time to time in terms of some disaster

cases or debugging process that involve production data

• Archival data - we might never use that type of data again, but we need to keep

it because of legal rules in the given country

We are okay if we wait a few hours or minutes to download archival data, but it's not

acceptable if we pull the user's avatar. In the same way, we are okay with losing some

files that we can quickly regenerate at low cost, but losing backup files is unacceptable.

Because of the different needs and nature of the files, we have various storage classes

at our disposal.

You can view actual storage classes in the official documentation

https://aws.amazon.com/s3/storage-classes/, but for this book, we will use standard

storage, which is used in most of the Rails applications where files are used frequently

or from time to time.

Use cases

Below, I collected the list of typical use cases for the S3 service when it comes to the

12

https://aws.amazon.com/s3/storage-classes/

connection with a Rails application:

• Attachments storage - Active Storage in Rails supports S3 by default; to use it,

a minimum configuration is required; I will demonstrate it later.

• Reports storage - if you have a background job that generates reports, you can

store them in an S3 bucket and make them accessible by generating a special pre-

signed URL. A pre-signed URL is a unique URL that grants access to the file for a

given period.

• Files versioning - S3 allows to turn on versioning and keep different versions of

the same file

• Assets hosting - instead of storing assets in the app/assets directory, you can

place them in the bucket.

Of course, there are many more use cases. One of the most significant advantages of

using S3 over standard server storage is that in the containerized application, you

wouldn't be able to access files generated by other application instance without

uploading them to the cloud.

Configuration

In this section, we will create the first bucket and place a public file called languages.txt

containing a list of programming languages. To confirm that our configuration is

working, we will access the file via the URL in our browser.

Sign into your AWS account and select the S3 service. Click "Create bucket" on the

right-hand side. First, select the region. Each time you create a new bucket, think about

the users or servers that will pull files from this bucket - where are they located? Select

the closest region, but don't worry if your users are worldwide. There are ways to

improve the performance and reduce the latency later.

Give your bucket a unique and meaningful name. You can use a prefix of your company

or application to make it unique. Uncheck the "Block all public access" checkbox and

confirm your choice; for this configuration, we want all files to be public by default.

Click "Create" and you should see the new bucket on the list:

13

Files upload

Click on the bucket name. You can now upload the file by clicking the "Upload" button

or by dragging the file on the list. A confirmation window will appear, and you can click

"Upload" without modifying the details.

Click on the file name, and you will be redirected to the file's details page, where you

can see information about the file and settings. Under the "Object URL" label, you will

find the unique URL that you can use to access the file; click on it. You will receive an

error because we need to update bucket permissions.

Bucket permissions

Navigate to the main view of the bucket. You will notice the "Permissions" tab - click on

it. Now, scroll down to the bucket policy section and click "Edit":

14

This is the first time you have to deal with the AWS Policy. The policy is a set of rules in

JSON format that defines who has access to which elements of the service. In our case,

the content of the policy would be the following:

{

 "Version": "2012-10-17",

 "Statement": [

 {

 "Sid": "PublicReadGetObject",

 "Effect": "Allow",

 "Principal": "*",

 "Action": [

 "s3:GetObject"

],

 "Resource": [

 "arn:aws:s3:::bucket-name/*"

]

 }

]

}

15

In a shortcut, we allow (Effect attribute) anyone (Principal attribute) to perform action

s3:GetObject (show the file) in resource arn:aws:s3:::bucket-name/* - replace bucket-

name with the name of your bucket. Paste the policy content with the changed bucket

name and save the changes. Now refresh the unique URL to your file - you should be

able to see the contents.

I will use different policies throughout the rest of this book and explain them in detail

later. The format of policy would be the same; only the resource, action, effect, and

principal values would change.

Presigned URLs to files

Delete the bucket policy we set a while ago. If the bucket is not public, we can still

access the file by generating a special presigned URL with the expiration time.

Everyone with this link can see the file; it's a perfect way to share reports via e-mail.

Navigate to the files list in the bucket and click on our file to see the details of the file.

In the right top corner, expand the "Object actions" list and select "Share with a

presigned URL":

16

Specify the number of minutes the link should remain active and submit the form. The

unique presigned link is now copied to your clipboard. Paste the link into the browser,

and you should be able to read your file.

After the expiration, you won't be able to re-access the file.

Pricing

When using Amazon S3 service, you don't pay only for the storage that you are using.

More factors affect the final monthly price for the service usage.

The official pricing page is available at https://aws.amazon.com/s3/pricing/, and the

price factors are the following:

17

https://aws.amazon.com/s3/pricing/

• Storage - you pay for gigabytes stored per month, and the pricing differs

depending on the amount of storage you consume. The more you use, the less

you pay.

• Requests - you pay for every request like PUT, POST, or GET, and the price is

for 1,000 requests.

• Data transfer - you pay for gigabytes transferred out of the bucket, and the

pricing differs depending on the amount of data transferred. The more you

transfer, the less you pay.

• Security access and control - the base encryption is free; you need to pay for

dual-layer server-side encryption or S3 access grants requests (both features are

out of the scope of this book)

• Management and insights - you need to pay when you use some additional

custom features of S3, like tagging millions of files or analytics tools (both features

are out of the scope of this book)

• Replication - you need to pay for the feature of automatic replication of files to

another bucket

• Transform and query - you need to pay for requests related to s3 when you use

lambda serverless service (you will read more about lambda later)

Unless you have some custom policies in your application or process very complex and

unique workloads, all you have to consider regarding s3 pricing is storage, requests,

and data transfer.

Permissions

You already saw one policy in the bucket configuration section. Permissions are one of

the base concepts of the AWS cloud. According to best practices, you should always

grant the least amount of permission needed to perform the job. If you need your code

to upload files to the S3 bucket, you only allow to upload files to a certain bucket, not to

access and manage all files in the bucket.

Broader permissions are a common and dangerous mistake developers make when

configuring the AWS cloud.

Permissions can be collected into policies. A policy consists of one or more permissions
18

that are somehow related. You can then attach policies to users. A policy named

staging-app-dev can allow to manage buckets for the staging application but not other

buckets in the AWS account.

Configuration

In the next section, we will write a code that will upload file to our bucket. To make it

happen, we need to create a policy that includes this permission and then attach it to

our user.

Navigate to the IAM service and click on the Policies link on the list on the left side of

the screen. You will see a list of policies. AWS manages those policies; they are

predefined, and you cannot change them, but you can use them for common operations

instead of defining your own:

Since we want to allow only upload files, the policy AmazonS3FullAccess gives too

much space. We need to create our own; let's do it now. Click on the Create policy

19

button, and this time, we are going to use policy creator instead of raw JSON:

• For the service, select s3

• Toggle the "write" list and select the "PutObject" action

• In the "Resources" section, click "Add ARNs" - ARN is the unique identifier; in our

case, the bucket identifier

• In the ARN modal, type the bucket name and click on the "Any object name"

bucket - confirm your choice

• Click "Next" and provide the policy name. Try to add a meaningful name that

describes the set of permissions. I named my policy upload-files-to-test-bucket

• Click "Create policy"

You should be able to see your new policy on the list when filtering by "customer

managed" policy type:

Attaching policies to users

The last step is to assign a policy to the given user so the API keys that we have for this

user will allow us to upload files to the bucket. Navigate to IAM service, select the

Users link on the list on the right, and click on your user.

You can now scroll down to the permissions section and click on the "Add permissions"

button:

20

Select "Attach policies directly", find the policy you created a while ago, mark it, and

click "Next". Click "Add policies" on the confirmation screen and the process is finished.

If you manage more users, a good practice is to create roles and assign policies to roles

instead of users.

The configuration phase is over, and we can finally start writing some Ruby code to

interact with the AWS services.

Development

If you haven't created a sample Rails application with support for ENV variables yet, go

back to the introduction chapter, where I demonstrated how to do it quickly.

In terms of AWS, we are not going to use a raw API. Amazon provides SDK for Ruby,

which works well, so there is no need to reinvent the wheel. In this section, I will review

a few real-world examples of features you can create with S3 and Rails. First, let's

configure and establish the connection with S3.

Connection configuration

Enter the project directory and install the s3 SDK:

bundle add aws-sdk-s3

I'm going to organize the code related to S3 in service called app/services/aws_s3.rb,

and here is the initial code that we will extend in a minute:

21

class AwsS3

 private

 def client

 @client ||= Aws::S3::Client.new(

 access_key_id: ENV.fetch('AWS_ACCESS_KEY_ID'),

 secret_access_key: ENV.fetch('AWS_SECRET_ACCESS_KEY'),

 region: ENV.fetch('AWS_REGION')

)

 end

end

We are now ready to implement the first feature - uploading files to the test bucket.

Uploading single files to the bucket

As you may remember, the action related to uploading files to the bucket was named

"PutObject". The method named the same way is available in the SDK and requires the

bucket name and key. Additionally, we will provide the file content:

class AwsS3

 def upload_file(bucket:, key:, body:)

 client.put_object(bucket: bucket, key: key, body: body)

 end

 private

 def client

 @client ||= Aws::S3::Client.new(

 access_key_id: ENV.fetch('AWS_ACCESS_KEY_ID'),

 secret_access_key: ENV.fetch('AWS_SECRET_ACCESS_KEY'),

 region: ENV.fetch('AWS_REGION')

)

 end

end

22

Let's create the file we will upload to the bucket:

echo "Ruby" >> ./tmp/best-language.txt

Open the Rails console and upload the file using our service:

service = AwsS3.new

service.upload_file(bucket: 'bucket-name', key: 'best-language.txt',

body: File.read('./tmp/best-language.txt'))

Replace bucket-name with your bucket name. A good practice is to fetch a bucket

name with a meaningful name from the environment variable. Here, I made it quicker by

hardcoding the value.

Go to the AWS account, open the test bucket, and verify if the file was uploaded

correctly.

Reading files from the S3 bucket

Since we uploaded a text file that contains the name of the best programming

language, let's pull it from the bucket and see what the name of the technology is:

class AwsS3

 # ...

 def get_file(bucket:, key:)

 client.get_object(bucket: bucket, key: key)

 end

 # ...

end

Like before, let's open the console and call the service:

23

service = AwsS3.new

service.get_file(bucket: 'bucket-name', key: 'best-language.txt')

Instead of the name of the best programming language, we've got the following error:

Aws::S3::Errors::AccessDenied. It happened because the policy attached to our AWS

keys allows only for file upload, not reading files that exist in the bucket.

We can update our existing policy, but since we can't update the name of the policy, it's

better to delete this policy and add a new one with a more meaningful name - manage-

test-bucket.

Do you know what change we need to make in the policy definition? It's s3:GetObject:

{

 "Version": "2012-10-17",

 "Statement": [

 {

 "Sid": "VisualEditor0",

 "Effect": "Allow",

 "Action": [

 "s3:PutObject",

 "s3:GetObject"

],

 "Resource": "arn:aws:s3:::railsonaws/*"

 }

]

}

Go ahead and delete the old policy, create a new policy, and assign it to our user. When

it's done, restart the console and rerun the code:

service = AwsS3.new

file = service.get_file(bucket: 'bucket-name', key: 'best-language.txt')

file.body.read # => "Ruby"

24

As I thought Ruby is the best language. But there is a problem. We need to tell the

world about it, but we can't because the file is not publicly available.

Generating presigned URLs

We can make the bucket files public by default, but we want to share only this file.

Generating unique and expiring links to files is a valuable feature widely used in Rails

applications.

Let's modify our service and provide a method for generating a presigned URL:

class AwsS3

 # ...

 def generate_presigned_url(bucket:, key:, expires_in:)

 signer = Aws::S3::Presigner.new(client: client)

 signer.presigned_url(:get_object, bucket: bucket, key: key,

expires_in: expires_in.to_i)

 end

 # ...

end

This time, we don't need any additional permissions; we can go ahead and generate the

URL to our file:

service = AwsS3.new

service.generate_presigned_url(bucket: 'railsonaws', key: 'best-

language.txt', expires_in: 2.minutes)

Listing files in the bucket

Another standard action performed with S3 in Rails applications is getting the names of

all files in the given bucket. This time, we have to update our policy with another

permission that is not related to all files but to the bucket itself:
25

{

 "Version": "2012-10-17",

 "Statement": [

 {

 "Sid": "VisualEditor0",

 "Effect": "Allow",

 "Action": [

 "s3:PutObject",

 "s3:GetObject"

],

 "Resource": "arn:aws:s3:::bucket-name/*"

 },

 {

 "Sid": "VisualEditor1",

 "Effect": "Allow",

 "Action": [

 "s3:ListBucket"

],

 "Resource": "arn:aws:s3:::bucket-name"

 }

]

}

The above policy is a good example of multiple permissions in one policy. We can now

update our service:

class AwsS3

 # ...

 def files_in_bucket(bucket)

 client.list_objects_v2(bucket: bucket).contents.map(&:key)

 end

 # ...

26

end

We can do our test to confirm that everything is working correctly. The above code

looks simple, but it won't work if more than 1000 files are in the bucket. For listing

larger buckets, we need to implement pagination:

def files_in_bucket(bucket:, limit: 1_000)

 initial_response = client.list_objects_v2(bucket: bucket, max_keys:

limit)

 files = initial_response.contents.map(&:key)

 next_continuation_token = initial_response.next_continuation_token

 while next_continuation_token.present?

 response = client.list_objects_v2(bucket: bucket, max_keys: limit,

continuation_token: next_continuation_token)

 files += response.contents.map(&:key)

 next_continuation_token = response.next_continuation_token

 end

 files

end

Using s3 to store attachments from ActiveRecord models

The newer version of Rails comes with the Active Storage library, allowing us to handle

attachments in the application easily. The good news is that the library allows for

different storage facilities, including s3. Let's see how we can configure our application

to store all files in one of the buckets.

Active Storage installation

The installation process consists of 2 simple steps. We have to trigger the installation

command, which will generate migration, and then we have to run the migration:

27

rails active_storage:install

./bin/rails db:migrate

Active storage is ready to use, but we don't have any models yet to which we can

attach any files. Let's change that situation.

Sample model generation

I will make it simple. Let's generate a User model with the name column, and a single

user will have one avatar:

./bin/rails g model User name:string avatar:attachment

./bin/rails db:migrate

You can now inspect the User model, and you will notice that it contains the

has_one_attached :avatar instruction, which tells Active Storage that we would like to

attach one file to each record, and it would be named avatar.

S3 driver configuration

The configuration of different drivers for Active Storage is placed in the

config/storage.yml file; let's uncomment the amazon entry and update credentials:

amazon:

 service: S3

 access_key_id: <%= ENV['AWS_ACCESS_KEY_ID'] %>

 secret_access_key: <%= ENV['AWS_SECRET_ACCESS_KEY'] %>

 region: <%= ENV['AWS_REGION'] %>

 bucket: bucket-name

The Amazon driver is ready, but we need to tell Rails that we want to store files on s3,

not on the disk for the development environment. We need to update the

config/environments/development.rb file with the following entry:

28

config.active_storage.service = :amazon

Also, make sure that for the configured keys you assigned the following policy that

contains all actions required by Active Storage to work correctly:

{

 "Version": "2012-10-17",

 "Statement": [

 {

 "Sid": "VisualEditor0",

 "Effect": "Allow",

 "Action": [

 "s3:PutObject",

 "s3:GetObject",

 "s3:DeleteObject",

 "s3:PutObjectAcl"

],

 "Resource": "arn:aws:s3:::bucket-name/*"

 },

 {

 "Effect": "Allow",

 "Action": "s3:ListBucket",

 "Resource": [

 "arn:aws:s3:::bucket-name"

]

 }

]

}

Verifying attachment upload

You will need a simple image of any format or size to test the code. I downloaded a

simple user avatar in PNG format. Let's open the Rails console and test:

29

user = User.create!(name: 'John Doe')

user.avatar.attached? # => false

user.avatar.attach(File.open('./avatar.png'))

user.avatar.attached? # => true

You can also take a look at the bucket. You should see there is a new file with a strange

tokenized name:

We are sure the file was uploaded, but let's test if we can display it in our application.

Rendering images from s3

For the test, I will create a simple controller, assign the first user, and try to render the

avatar in the view. Create the HomeController:

class HomeController < ApplicationController

 def index

 @user = User.find_by!(name: 'John Doe')

 end

end

Define a simple view in app/views/home/index.html.erb:

30

<%= image_tag(@user.avatar) %>

The last step is to update the config/routes.rb file to render the view as the root page

of our application:

Rails.application.routes.draw do

 root "home#index"

end

Run the rails server with the rails s command and visit localhost to verify that the avatar

is displayed correctly. If you look into the console logs, you will notice that Rails created

a presigned URL to render the image. Refresh the page, and you will see that the new

link has not been generated, as the old one hasn't expired yet.

31

32

